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I n recent years, there has been a
growing interest in hyperglycemia
associated with critical illness.
Hyperglycemia in critically ill pa-

tients is a consequence of several factors,
including increased cortisol, cat-
echolamines, glucagon, growth hor-
mone, gluconeogenesis, and glycogenol-
ysis (1, 2). In addition, insulin resistance
has been demonstrated in �80% of crit-
ically ill patients (3).

There is a wealth of observational
evidence from different, mainly surgi-

cal, patient populations demonst-
rating that hyperglycemia is associated
with poor clinical outcomes in critically
ill patients (4 – 6). An important limita-
tion in such observational evidence is
that it cannot prove that hyperglycemia
causes poor clinical outcomes; hyper-
glycemia may merely be a marker of
severe illness.

There is evidence from some ran-
domized trials that correction and pre-
vention of hyperglycemia improve mor-
bidity and may also decrease mortality
in some critically ill patients (7, 8). This
suggests that there is a causal relation-
ship between hyperglycemia and poor
outcomes. Nevertheless, the optimal
target blood glucose is controversial,
and a widely accepted insulin regimen
has not been established. Furthermore,
other intervention studies have yielded
contradictory results (9).

In recent studies, variability in blood
glucose levels has emerged as a new pre-
dictor of mortality in intensive care unit

(ICU) patients (10, 11). In the retrospec-
tive studies by Egi et al (10) and Krinsley
(11), the glycemic variability was ex-
pressed as the SD of each patient’s blood
glucose levels extracted from electroni-
cally stored biochemical databases. The
authors proposed that glycemic variabil-
ity should be added as a metric to analyze
ongoing and future clinical trials on in-
tensive insulin therapy.

We hypothesized that new techniques
derived from nonlinear dynamics and
fractal geometry could offer a more in-
depth view of the glucoregulatory process
than the classic glucose variability mea-
sures (SD or Mean Amplitude of Glycemic
Excursions) (12), therefore allowing for
the detection of slighter changes argu-
ably correlated with the patient’s physio-
logic status.

Nonlineal dynamics (the study of the
behavior of nonlineal deterministic sys-
tems) is increasingly been used in phys-
iologic studies. Nonlineal systems dis-
play an extremely complex output that,
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Objective: To investigate glycemic dynamics and its relation
with mortality in critically ill patients. We searched for differences
in complexity of the glycemic profile between survivors and
nonsurvivors in patients admitted to a multidisciplinary intensive
care unit.

Design: Prospective, observational study, convenience sample.
Settings: Multidisciplinary intensive care unit of a teaching

hospital in Madrid, Spain.
Patients: A convenience sample of 42 patients, aged 29 to 86

yrs, admitted to an intensive care unit with an Acute Physiology
and Chronic Health Evaluation II score of >14 and with an
anticipated intensive care unit stay of >72 hrs.

Interventions: A continuous glucose monitoring system was
used to measure subcutaneous interstitial fluid glucose levels
every 5 mins for 48 hrs during the first days of intensive care unit
stay. A 24-hr period (n � 288 measurements) was used as time
series for complexity analysis of the glycemic profile.

Measurements: Complexity of the glycemic profile was evalu-
ated by means of detrended fluctuation analysis. Other conven-
tional measurements of variability (range, SD, and Mean Amplitude
of Glycemic Excursions) were also calculated.

Main Results: Ten patients died during their intensive care
unit stay. Glycemic profile was significantly more complex
(lower detrended fluctuation analysis) in survivors (mean de-
trended fluctuation analysis, 1.49; 95% confidence interval,
1.44 –1.53) than in nonsurvivors (1.60; 95% confidence interval,
1.52–1.68). This difference persisted after accounting for the
presence of diabetes. In a logistic regression model, the odds
ratio for death was 2.18 for every 0.1 change in detrended
fluctuation analysis.

Age, gender, Simplified Acute Physiologic Score 3 or
Acute Physiologic and Chronic Health Evaluation II scores
failed to explain differences in survivorship. Conventional vari-
ability measurements did not differ between survivors and
nonsurvivors.

Conclusions: Complexity of the glycemic profile of critically ill
patients varies significantly between survivors and nonsurvivors.
Loss of complexity in glycemia time series, evaluated by de-
trended fluctuation analysis, is associated with higher mortality.
(Crit Care Med 2010; 38:849–854)
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although being rigorously determinis-
tic, is unpredictable and, at first glance,
seems to be random (thus, the term
“pseudorandom”). These systems have
some striking similarities with certain
physiologic mechanisms: They exhibit a
pseudorandom behavior, they tend to
develop spontaneous rhythms, and
most notably, they have a strong ten-
dency to remain in a narrow range of
values (“strange attractors”), displaying
a behavior that could easily be called
homeostatic.

Complexity analysis of time series
has been widely used in the study of
variability of biological phenomena,
such as cardiac interbeat interval (13),
cardiac arrhythmia (14, 15), intracra-
nial hypertension (16), sepsis and organ
failure (17, 18), temperature (19, 20)
and electroencephalogram activity (21,
22). Ogata et al (23) and Churruca et al
(24) have analyzed diabetes-related alter-
ations of glucose control by means of
complexity analysis of the glycemic pro-
file. They have reported diminished com-
plexity of glycemic profile in diabetic pa-
tients vs. healthy volunteers. Several
authors have proposed that critical illness
and multisystem organ dysfunction are
characterized by the phenomenon of de-
complexification (25). Healthy state ex-
hibits some degree of (pseudo)random
variability in physiologic variables,
such as heart rate or temperature. Loss
of such irregularity (and consequently of
complexity) is one of the hallmarks of
critical illness (26, 27).

It should be noted that complexity
and variability, although seemingly re-
lated, are quite different and often con-
tradictory concepts. A key difference be-
tween variability and complexity
metrics is that, although variability is
based on conventional statistics (range,
SD) and, thus, takes each measurement
as an independent value, in complexity
analysis, each measure is related to its
neighbors. This arguably allows com-
plexity analysis to detect minor sys-
temic dysfunctions, not perceived by
variability studies. In general, a healthy
regulatory system displays a complex
output, with frequent and quick correc-
tions of even small deviations. On the
other hand, a failing regulatory system
will be sluggish and allow for greater
deviations before reacting. Therefore,
as a rule of thumb, healthy systems
have a high complexity and low vari-
ability, while failing systems display
lower complexity and higher variability.

The aim of this pilot study was to
investigate the complexity of the glyce-
mic profile in critically ill patients.
Namely, we searched for differences in
complexity of glycemic profile between
the patients who survive and the patients
who die in the ICU. We hypothesized that
the glycemic profile would be less com-
plex in nonsurvivors.

MATERIALS AND METHODS

Patients

A convenience sample of 42 successive pa-
tients who were admitted to the ICU of
Mostoles Hospital in Madrid, Spain, from No-
vember 2007 to January 2009, participated in
the study. We included in our study patients
aged �18 yrs, with an Acute Physiology and
Chronic Health Evaluation (APACHE) II score
of �14, and with an anticipated ICU stay of
�72 hrs.

Collected demographic data included
age, comorbilities, and reason for inte-
nsive care. We also recorded APACHE II
score during the first 24 hrs, Simplified
Acute Physiologic Score (SAPS) 3 score,
blood glucose, and basic hematologic and
biochemical parameters at the time of ad-
mission. Type of nutrition, units of insulin
administered, and use of vasoactive drugs
during the registry were also recorded. A
patient was considered to have diabetes if
he/she had been informed of this diagnosis
and received treatment (diet, tablets, or in-
sulin). For the final analysis, we classified
the patients as either survivors (those who
were finally discharged from the ICU) or
nonsurvivors (patients who died in the ICU).
Table 1 summarizes the main clinical data.

The study was approved by the institu-
tional ethics committee at Mostoles Hospital
(Madrid, Spain), and all subjects, or their legal
surrogate, gave their informed consent to par-
ticipate.

Glycemia Measurements

A continuous glucose monitoring system
(CGMS) (CGMS System Gold, Medtronic
MiniMed, Northridge, CA) was used to mon-
itor subcutaneous interstitial fluid glucose
levels (28, 29). The patients had a sensor
inserted in the abdominal subcutaneous tis-
sue, and interstitial glucose was recorded
every 5 mins for at least 48 hrs during the
first days of their ICU stay. In two patients,
for technical reasons, the glycemic record-
ing was not performed until the second and
third week. Four finger-stick blood glucose
measurements were introduced to the
Medtronic MiniMed daily to calibrate the
measurements. Otherwise, the patients re-

ceived standard care, including nutrition
and insulin therapy, according to their at-
tending physician. A glucose time series was
obtained from each subject and downloaded
to a computer. We then extracted a 24-hr-
long series for study, from 8 AM on day 2 to
8 AM on day 3 (in seven patients, the data set
did not start at 8 AM because of technical
problems, but in every case, there were at
least 8 hrs of run-in period before the ana-
lyzed data set).

Conventional statistics (mean or median,
SD, and Mean Amplitude of Glycemic Excur-
sions) were calculated from each time
series.

Complexity Analysis

Complexity was assessed through de-
trended fluctuation analysis (DFA). An in-
depth discussion on DFA is beyond the scope
of this paper and can be consulted elsewhere
(30). Nonetheless, we provide a succinct de-
scription of the analytical procedure in the
Appendix. DFA is a unitless metric that es-
timates the degree of long-range correla-
tions within a signal analyzing how the time
series and its linear regression diverge as
the “time window” considered increases. In-
tuitively, DFA can be conceived as repre-
senting the span of influence of the different

Table 1. Characteristics of patients included in
the study

Characteristic n � 38

Age, yrs (range) 59 (29–86)
Sex, male/female 25/13
Median APACHE II score at first

24 hrs (IQR)
19 (16–22)

Mean SAPS 3 score (SD) 61 (12)
Mean length of stay, days (SD) 23 (21)
History of DM type 2, n (%) 11 (29)

Treated with insulin, n 3
Treated with oral antidiabetic

agent, diet or both, n
8

Reason for intensive care, n
Acute respiratory failure 21
Gastrointestinal bleeding 4
Myocardial infarction 4
Heart failure 2
Cerebral infarction 2
Peritonitis 2
Pancreatitis 1
Acute renal failure 1
Trauma 1

Glucose at admission, mg/dL (SD) 165 (80)
Location from which the patient

was admitted to the ICU
ward/emergency room/other
ICU

12/23/3

Mortality, n (%) 10 (26)

APACHE, Acute Physiology and Chronic
Health Evaluation; IQR, interquartile range;
SAPS, Simplified Acute Physiology Score; DM,
diabetes mellitus; ICU, intensive care unit.
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points in a time series. In a series with high
complexity, the influence of each point rap-
idly fades away, whereas in a “smoother”
series, the influence of each point lasts
longer. As a rule of thumb, higher complex-
ities are displayed as lower DFA (until a
minimum of 0.5).

Statistical Analyses

The complexity of the glycemic profile,
measured as DFA, followed a normal distri-
bution as confirmed by a Kolmogorov-
Smirnov test. Differences in DFA between
survivors and nonsurvivors were evaluated
using analysis of variance. A predictive
model of the final outcome based on com-
plexity and clinical variables was built
through logistic regression.

All analyses were performed with SPSS
software version 12 (SPSS, Inc., Chicago,
IL), and p � .05 was considered to be
statistically significant. Results are re-
ported as mean values and 95% confidence
interval (CI).

RESULTS

Patients

Of the 42 patients enrolled in the
study, four patients were excluded be-
cause of failure of the glucose monitoring
system; all four were survivors. Except for
a slightly higher mean APACHE II score
(28 vs. 20), the missing patients were
similar (regarding gender, age, glucose at
admission, and SAPS III score) to those
reported.

A total of 28 (74%) patients survived
and ten (26%) died in the ICU. One pa-
tient died in the internal medicine ward
16 days after being discharged from the
ICU (and, hence, was considered a survi-
vor in our analyses). The rest of the ICU
survivors were discharged home after
their hospital stay. There were no signif-
icant differences between survivors and
nonsurvivors in age, APACHE II, or SAPS
3 scores (Table 2). Glycemia at the time
of admission was higher in survivors than
in nonsurvivors, although it did not
reach statistical significance (mean,
178 mg/dL; 95% CI, 148 –208 in survi-
vors vs. 129 mg/dL; 95% CI, 79 –179 in
nonsurvivors, p � .095). Neither mean
glucose, its SD, or Mean Amplitude of
Glycemic Excursions during the glu-
cose recording differed between survi-
vors and nonsurvivors.

Table 2 summarizes the main patient
characteristics in each group. Represen-
tative examples of glycemic profiles from

a surviving and a nonsurviving patient
are shown in Figure 1.

Complexity Analysis

DFA was significantly lower (indicat-
ing higher complexity) in surviving pa-
tients than in patients dying in the ICU
(1.49 [95% CI, 1.44–1.53] vs. 1.60 [95%
CI, 1.52–1.68], F(1,36) � 6.548, p �
.015). This difference persisted even after
inclusion of the presence of diabetes, age,
APACHE II, and SAPS 3 score in the
model (F(1,31) � 12.581, p � .001).

DFA did not differ according to gen-
der, and did not correlate with age,
APACHE II, or SAPS 3 scores. We found
no significant differences in DFA in relation
to type of feeding (oral, enteral, or paren-
teral) or in relation to the amount of insu-
lin administered during the registry.

There was a positive significant corre-
lation between DFA and both mean glu-
cose (r � .339, p � .046) and glucose SD

(Spearman’s � � 0.457, p � .006) during
the testing day. There was no correlation
between Mean Amplitude of Glycemic Ex-
cursions and DFA.

DFA was not different between dia-
betic and nondiabetic patients (1.51 vs.
1.52, p � .92). However, survival acted as
a confounding factor, and when control-
ling for this variable, the DFA estimated
marginal mean for diabetic patients was
1.67 (95% CI, 1.60–1.79) vs. 1.54 (95%
CI, 1.49 –1.59) in nondiabetic patients
(p � .039 for diabetes, p � .001 for sur-
vival, p � .025 for the interaction diabe-
tes � survival).

In a logistic regression model, DFA
was significantly associated with mortal-
ity (�2LLR, 37.729, p � .028). The odds
ratio for death associated with a 0.1 in-
crease in DFA was 2.18 (95% CI, 1.09–
4.37). These results did not change sig-
nificantly after controlling for the
presence of diabetes (�2LLR, 33.984, p �

Figure 1. Examples of glycemic profile. Two examples of glycemic curves, from a survivor (A) and a
nonsurvivor (B). Although the glycemic values are not significantly different (average glycemia, 119
mg/dL in A; 128 mg/dL in B), the complexity of the survivor’s profile A is greater (lower detrended
fluctuation analysis [DFA]) than that of the nonsurvivor.

Table 2. Differences between survivors and nonsurvivors

Survivors
n � 28

Nonsurvivors
n � 10 p

Sex, male/female 17/11 8/2 .44 (NS)a

Age, yrs (95% CI) 57 (52–63) 62 (50–73) .42 (NS)b

History of diabetes mellitus type 2, n (% of patients) 10 (36) 1 (10) .22 (NS)a

APACHE II score at first 24 hrs (95% CI) 21 (19–23) 19 (15–22) .30 (NS)b

SAPS 3 score (95% CI) 60 (55–64) 65 (57–73) .27 (NS)b

PCR (95% CI) 117 (77–157) 106 (39–174) .79 (NS)b

Glucose at admission, mg/dL (95% CI) 178 (148–208) 129 (79–179) .095 (NS)b

Daily insulin during the registry
n (% of patients) 17 (61) 7 (70)
Mean dose, IU 35 36

Median glucose during the registry, mg/dL (95% CI) 138 (124–151) 144 (122–167) .60 (NS)b

SD of glucose during the registry, mg/dL (95% CI) 17 (13–20) 22 (16–29) .13 (NS)b

MAGE (95% CI) 41 (30–51) 34 (17–51) .5 (NS)b

DFA (95% CI) 1.49 (1.44–1.53) 1.60 (1.52–1.68) .015b

CI, confidence interval; APACHE, Acute Physiology and Chronic Health Evaluation; SAPS, Sim-
plified Acute Physiology Score; PCR, polymerase chain reaction; MAGE, Mean Amplitude of Glycemic
Excursions; DFA, detrended fluctuation analysis.

aFisher’s exact test; banalysis of variance. The p values refer to the differences between the groups.
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.019; odds ratio, 2.53; 95% CI, 1.16–
5.49).

DISCUSSION

Our data show a significant differ-
ence in the complexity of the glycemic
profile between nonsurvivors and survi-
vors in a multidisciplinary ICU patient
population. Loss of complexity in the
glycemic profile is accompanied by a
higher odds ratio of death, and the size
of this effect is not negligible: a 0.1
increase in DFA roughly doubles the
odds of death for the patient.

An unexpected finding was the lack of
differences in DFA between diabetic and
nondiabetic patients, because other stud-
ies (23, 24) have consistently found an
increased DFA in diabetes. However, our
results are probably due to confounding
factors. The odds of survival were para-
doxically increased in diabetic patients
(10:1 vs. 18:9), and when this variable was
controlled, a clear difference in estimated
marginal means appeared.

Dynamic measures of glucose time se-
ries seem to provide complementary—and
perhaps more powerful—information on
glucoregulation than conventional glyce-
mic analysis. These measurements differ
from traditional variability measure-
ments because they are not related to
the magnitude of variability, but rather
to its organization. Our hypothesis is
that a healthy regulatory system is able
to detect small changes in glucose con-
centration and makes continuous small
adjustments. Even minor changes in
glucose concentration might launch
prompt counterregulatory measures to
adjust the glucose concentration. Thus,
the tracing of glucose concentration
would be characterized by frequent
small ups-and-downs displaying high
complexity (low DFA) and low variabil-
ity (low SD). A failing regulatory system
may require bigger changes in glucose
concentration to launch a counterregu-
latory response. In this case, the tracing
of glucose concentration would show
low complexity (high DFA) and high
variability (high SD). As expected, our
sample displayed an inverse correlation
between complexity and variability (di-
rect correlation between DFA and SD of
the glycemic tracing: Spearman’s � �
0.457, p � .006).

It has been suggested that scale invari-
ance may be a central organizing princi-
ple of physiologic structure and function.
The diminished complexity (i.e., in-

creased DFA) of the glucose profile in
nonsurvivors suggests a breakdown of
this scale invariant, fractal organization,
and, thus, a failing glucoregulatory sys-
tem, even before the development of
overt hyperglycemia.

To our knowledge, this is the first at-
tempt to quantify the complexity of glu-
cose profile in critically ill patients. Ogata
et al (23, 31) analyzed diabetes-related
alterations of glucose control by means of
DFA by use of a CSMG, reporting a mean
DFA 1.25 � 0.29 in healthy volunteers.
All of the critically ill patients in our
series had DFA values greater than those
reported by Ogata et al (23, 31), which
supports our hypothesis that critical ill-
ness and multisystem organ dysfunction
are characterized by a loss of complexity
in the glycemic profile.

An obvious limitation of our study is
that the accuracy of point-of-care blood
glucose testing in critically ill patients
has proven to be poor (32, 33). Our mea-
surements are based on a subcutaneous
CGMS. Corstjens et al (34) have studied
the accuracy of this method in critically
ill patients, and their results show a Pear-
son correlation coefficient of 0.89 for
CGMS vs. blood gas analyzer. On the
other hand, it is worth noting that an
advantage of dynamic methods is that,
rather than aiming at the specific value of
each measure, they focus on how each
measure relates with previous and suc-
cessive ones. They are more interested in
variation than in values, and this makes
them more robust against systematic
bias.

Our recruiting rhythm was admittedly
slow. We had to share the CGMS device
with the Departments of Endocrinology
and Pediatrics and, naturally, patient car-
ing was a priority. Thus, the studied pa-
tients constituted a convenience sample,
not a consecutive series of patients ad-
mitted to the ICU, and we could not
maintain standardized timing of com-
plexity measurements. In all patients, the
glycemic profile was obtained during
their first week of ICU stay (four patients
on day 1; 15 patients on day 2; 11 patients
on day 3; two patients on day 4; four
patients on day 5; and two patients on day
6). In two cases, the initial continuous
glucose series failed, and had to be re-
peated. For technical reasons, this was
not possible until weeks 2 and 3, respec-
tively. Both patients were survivors. The
exclusion of these cases from the analysis
did not change the results (i.e., DFA sur-

vivors, 1.48; nonsurvivors, 1.60; p �
.018) .

Another limitation of our study is that
patients were not following a standard-
ized protocol for feeding, infusions, and
insulin administration. Nevertheless, in
acutely ill patients admitted to an ICU,
these types of rigid protocols are probably
not feasible, and we were willing to re-
flect a real-life situation.

As for the mechanisms underlying
this loss of complexity, one can only
speculate. A seductive explanation
could be based on the “uncoupling” of-
ten observed in failing complex sys-
tems. Another obvious candidate is in-
sulin resistance in a context of
increased counterregulatory hormones.
A more unlikely and less physiologically
attractive (but perhaps more clinically
useful) hypothesis would assume that
the impaired complexity in the intersti-
tial fluid only represents a poor hemo-
dynamic status, with peripheral hy-
poperfussion and delayed equilibrium.

As in previous studies, we do not
establish whether glycemic dysregula-
tion is the cause of an impaired prog-
nosis or whether it is just a marker of
physiologic breakdown. However, our
results indicate that complexity analy-
sis may constitute a powerful tool in
the study of glycemic control in critical
care patients.

CONCLUSIONS

In critically ill patients, there is a
difference in the complexity of the gly-
cemic profile between survivors and
nonsurvivors. Loss of complexity in gly-
cemia time series, evaluated by DFA,
correlates with higher mortality. Com-
plexity analysis may offer new insights
in issues involving glucose control in
critically ill patients.
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Appendix

Detrended Fluctuation Analysis

Detrended fluctuation analysis
(DFA) attempts to disclose patterns of
self-similarity in time plots. In other
words, it looks for the presence of
“memory” in the curve, understood as
long-range correlations.

To be able to perform DFA, it is first
necessary to integrate the time series:

y�k	 � �i�1
k �Gi � Gmean	

(Fig. 2A), where Gi is each individual
point, and Gmean is the mean of the series
as a whole.

Next, the integrated curve is divided
into time segments of size n (Fig. 2,
B–D). A regression line is calculated for
each segment, and the difference between
the integrated curve and the different re-
gression lines is computed as:

F�n	 � �1
N�

k�1

N


y�k	 � yn�k	�2,

where F(n) is the area between the in-
tegrated curve and the regression lines,
N is the total number of data points,
y(k) is the value of the integrated curve
at each point, and yn(k) is the value of
the regression line at that point.

This operation is repeated for different
time frames (that is, for different values
of n). The smaller the time scale (n), the
better the fit of the regression lines to the
integrated curve and the lower the value
of F(n). Conversely, the value of F(n)
tends to increase exponentially as the
time frame (n) increases.

Finally, the relation between F(n) and
the size of n is analyzed. A plot is drawn
with log[F(n)] on the y-axis and log(n) on
the x-axis (Fig. 2E). A good fit to a regres-
sion line indicates the existence of scaling
(self-similarity), and a fractal structure
can be assumed.
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DFA is the slope of the regression
line (�). It displays the scaling expo-
nent, and is an indicator of the degree
of complexity of the curve. In an en-
tirely random time series (“white
noise”), � � 0.5. A 1/f type time series
will have � � 1. A “random walk” (the
integration of a random series, “brown

noise”) will display � � 1.5. Long-range
negatively correlated fluctuations will
show � �1.5, whereas in positive cor-
relations, � �1.5.

On the whole, a curve is more com-
plex (less predictable) the closer its
value of � is to 0.5. (Values of � �0.5
reveal anticorrelations, which also

implies a certain degree of predict-
ability, and hence, a lower level of com-
plexity).

In our series, n � 288.
The program used to calculate DFA

was written in Python (http://www.
python.org) and is available from the au-
thors on request.

Figure 2. Detrended fluctuation analysis (DFA). From the original time series, an integrated curve is obtained (A).

y�k	 � �i�1
k �Gi � Gmean	,

where Gi indicates each individual point; Gmean indicates mean of the series as a whole. This integrated curve will be utilized for further calculations. The integrated
curve is divided into progressively smaller time segments (B, C, D). A regression line is calculated for each segment, and the total difference between the integrated
curve and the regression lines is calculated for each time window (F(n), gray area). The smaller the time window, the better the fit of the regression line and the
lower the value of F(n). Finally, a plot is drawn (E) with log (F(n) in the y-axis and log (time-window) in the x-axis. A good fit reveals the presence of scaling
(self-similarity). DFA is the slope of the regression line. It displays the scaling exponent and is an indicator of the degree of complexity of the curve.
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