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Measurement of body tem-
perature is one of the old-
est clinical tools available,
and fever still remains a re-

liable indicator of illness. On the other
hand, the prognostic and diagnostic value
of fever is quite limited. Generally, if a
patient is running a fever, he or she is
most likely sick (although this does not
tell us much more about the etiology).
When a patient does not have a fever,
body temperature does not furnish any
clinical information. In any case, a pa-
tient cannot be said to be more seriously

ill because she has a higher temperature,
nor can she be considered to be healthy
because she does not have a fever.

Theoretically, temperature is a quan-
titative variable, but in actual clinical
practice it behaves like a dichotomous
variable (febrile/afebrile), with a poorly
defined cutoff point (1). Attempts to con-
sider fever as a continuous quantitative
variable have been largely unsuccessful,
and fever categories (e.g., intermittent,
continuous) have had little clinical suc-
cess. Nevertheless, in patients both with
or without fever, temperature is the end
result of a finely tuned, complex system
and might afford a window on significant
physiologic information.

An approach that would allow temper-
ature (or some other measure obtained
from it) to be used as a continuous, non-
dichotomous variable having physiologic
significance could be a novel tool poten-
tially useful in clinical settings. Further-
more, it could also be used for afebrile
patients, for whom classic fever measure-
ment is of no help.

Certain methods derived from nonlin-
ear dynamics and complexity analysis
could be put to use for this purpose.
Varela et al. (2) reported that in healthy
subjects, the temperature curve behaves
like a natural fractal whose complexity
may be analyzed in a consistent manner.
In addition, they observed that complex-
ity decreased significantly with age.

The present article is an attempt to
extend that approach to critically ill pa-
tients. The hypothesis tested was that in
severely ill patients, the thermoregula-
tory system will display this damage as a
deterioration of its output, manifested as
a decrease in the complexity of the tem-
perature curve (irrespective of whether
fever is present). Approximate entropy
(ApEn), a well-established measure of
complexity in time series, was used for
this purpose. This variable has been
shown to be robust and insensitive to
baseline fluctuations (3–7).

Our purpose was to investigate the
complexity of the temperature curve in
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Objective: In certain physiologic systems, disease is associ-
ated with a loss of complexity in system’s output. We test the
hypothesis that, in critically ill patients, there is an inverse rela-
tion between the complexity of the temperature curve and the
clinical status. We also consider whether complexity analysis of
the temperature curve may have prognostic value.

Design: Prospective, observational study.
Setting: Intensive care unit of a general hospital in Madrid,

Spain.
Patients: Twenty-four successive patients admitted in the in-

tensive care unit with multiple organ failure.
Interventions: Skin temperature was measured every 10 mins

from inclusion in the study until discharge or death (median
length of stay 18.8 days, interquartile range 86).

Measurements: From the temperature time series, hourly ap-
proximate entropy measurements were obtained. Clinical status
was evaluated using the Sequential Organ Failure Assessment
(SOFA) score.

Main Results: A significant inverse relationship between ap-

proximate entropy and the attributed SOFA score was observed in
89% of the patients considered. Both mean and minimum approx-
imate entropy were significantly lower in patients who died than
in patients who survived (mean approximate entropy, 0.47 vs.
0.61; minimum approximate entropy, 0.24 vs. 0.40; in both cases
p < .001). To evaluate the prognostic value of both mean and
minimum approximate entropy, we fitted logistic regression mod-
els against survival. An increase in 0.1 units in minimum or mean
approximate entropy increased 15.4- and 18.5-fold the odds of
surviving, respectively.

Conclusions: The clinical status of patients suffering multiple
organ failure is inversely correlated to the complexity of the
temperature curve expressed as approximate entropy. Reduced
complexity has dismal prognostic implications. Its assessment is
noninvasive and inexpensive and allows for real-time continuous
monitoring of clinical status. (Crit Care Med 2005; 33:2764–2771)

KEY WORDS: body temperature; multiple organ failure; complex-
ity analysis; nonlinear dynamics; approximate entropy; Sequential
Organ Failure Assessment
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critically ill patients. Namely, we
searched to establish the following:

1. In each individual patient, whether
there is a correlation between the
time trend for clinical status as
measured by the Sequential Organ
Failure Assessment (SOFA) score
and complexity in the recorded
temperature values

2. In the whole sample, whether the
complexity measurements have
prognostic value as indicators of the
likelihood of patient survival

MATERIALS AND METHODS

Patients. The study was carried out in the
intensive care unit (ICU) at the Hospital de
Mostoles, in one of the outlying areas around
Madrid, Spain. The study population consisted
of 24 consecutive patients diagnosed with
multiple organ failure. The study spanned
from January 2002 to March 2004 but was
interrupted from June 2003 to January 2004
because of technical problems (no data logger
or transducer available).

Multiple organ failure was defined as two
or more impaired organs (respiratory, cardio-
vascular, coagulation, central nervous system,
liver, or renal), irrespective of the primary
diagnosis or cause of admission.

The patients were 13 women (mean age,
62.4; range, 18–84) and 11 men (mean age;
58.0, range; 36–81). Informed consent was
obtained from the patient or a family member
whenever possible. In three cases, the patients
died before informed consent could be ob-
tained. However, since consent had not been
refused (it had proved impossible to contact a
family member) and since temperature mea-
surement is a routine form of clinical moni-
toring that can be regarded as being more of
an observational register than a form of inter-
vention, it was decided to include these three
patients. The study was approved by the hos-
pital’s Ethics and Research Review Board.

Table 1 summarizes the clinical data for
the patients.

Temperature Measurement. A thermistor
temperature sensor (Datalogger Spectrum
1000, Veriteq Instruments, Richmond, BC,
Canada) was attached to the right or left hy-
pochondrium (upper abdomen) of the patients
included in the study, and temperature read-
ings were taken every 10 mins from inclusion
until discharge from the ICU or death.

The readings yielded successive series of 30
consecutive hours (180 readings) each with a
1-hr offset and 29 hrs of overlap between every
two adjacent series. These series were used to
calculate the ApEn values for each successive
time period. Accordingly, the method pro-
duced one ApEn value per hour from the day
after admission, with each value encompass-
ing the preceding 30 hrs, until the patient’s

discharge or death. To avert the influence of
pre- or perimortem conditions, the last four
temperature readings preceding discharge or
death were not included. Stationarity was ver-
ified by means of the reverse arrangements
test (8).

Patients were occasionally disconnected
(for radiologic examinations, for surgical pro-
cedures, or by accident). Furthermore, acci-
dental disconnection was assumed to have oc-
curred when there was a difference of �3°C
between any two consecutive readings or
when the temperature reading was �30°C.
Where the disconnection spanned one or two
readings, the value was calculated by interpo-
lation based on the preceding and the follow-
ing reading. Where the disconnection lasted
more than three readings, the series was
stopped and restarted from the beginning
(meaning that no complexity value was avail-
able until 30 hrs later).

Globally, complexity values were obtained
for an average of 78.5% (range, 40–100%) of
the total possible number of hours for each
patient (not counting the first 30 hrs).

Sequential Organ Failure Assessment
(SOFA). The extent of organ dysfunction was
measured in all the patients every 48 hrs using
the SOFA scoring system (9, 10). The SOFA
score is a widely accepted tool for assessing
severity and morbidity based on temporal
measurement of organ dysfunction. It has
been shown to correlate well with mortality
rate (11) and it is considered as accurate as the
other systems available, namely the Multiple
Organ Dysfunction Score (12) and Logistic
Organ Dysfunction scoring (13).

SOFA analyzes the degree of physiologic
impairment of various organs or systems (re-
spiratory system, hemodynamic system, coag-
ulation, renal function, liver function, and
level of consciousness), with scoring running
from 0 (no organ dysfunction) to 24 (maxi-
mum organ dysfunction) (Table 2). Hourly
SOFA scoring is impossible for practical rea-
sons (it requires an arterial blood sample and
would be hardly justifiable on clinical
grounds), and consequently hourly SOFA
scores, termed attributed scores, were calcu-
lated by interpolation from the empirical val-
ues compiled every 48 hrs, assuming a linear
rate of increase.

Complexity Analysis: ApEn. ApEn is a
measure of time series complexity. Given a
time series, three variables are needed to mea-
sure ApEn, namely, m, r, and N—m being the
length of the vectors of the curve to be com-
pared (usually, m � 2, i.e., the vectors to be
compared are composed of two successive
points); r being the range defining two mea-
surements as similar (a value of between 0.15
and 0.20 standard deviations normally being
used); and N being the total number of mea-
surements considered (there being a consen-
sus that a value �10m is needed).

By way of illustration, let us suppose we
have a time series of N temperature measure-
ments (Fig. 1). Let us take the vector consist-

ing of the first pair of successive data points,
p1 and p2, from the total series of N points. We
then seek all the vectors consisting of points pi

and pi � 1 in the series that fulfill the condi-
tions:

�p1 � r� � pi � �p1 � r� and

�p2 � r� � pi�1 � �p2 � r�

This selects all the vectors [pi, pi � 1]
similar to [p1, p2] (i.e., whose origin is in
the range of p1 � r and whose end point
is in the range p2 � r). We next find
which proportion of these vectors is fol-
lowed by a value of pi � 2 that falls within
the range of (p3 � r) � pi � 2 � (p3 � r).
This is a measure of the extent to which a
vector similar to [p1, p2] will condition a
subsequent point similar to p3. The pro-
cedure is repeated for all successive pairs
of points [p1, p2], [p2, p3], . . . , [pn-1, pn],
in each case measuring the conditional
probability that, given a vector similar to
the vector with which it is being com-
pared, the next point will be similar to
the point following the pattern vector.

ApEn is the average logarithm of the
conditional probability for each pair of
points, after the sign has been changed to
ensure a positive value. Thus, ApEn pro-
vides an inverse measure of the extent to
which knowledge of any two successive
points allows the next to be predicted.
The measure will be higher the greater
the irregularity of the series of data
points, reaching a maximum value for an
entirely random series.

In the case of our series, m � 2 (i.e.,
the vectors to be compared consisted of
each pair of successive readings), r � 0.2
SD for the time series being analyzed, and
n � 180 (i.e., 180 readings were analyzed,
one reading every 10 mins for 30 hrs).

The program used to calculate ApEn
was written in Python (http://www.py-
thon.org) and is available from the au-
thor on request (mvarela.hmtl@salud.
madrid.org).

As an example, Figure 2 shows two
real temperature series from our pa-
tients, one with high and one with low
ApEn values.

Statistics. Only patients with at least three
empirical SOFA measurements (and hence a
length of stay of �5 days) were analyzed to
test for within-individual temporal correlation
between ApEn and SOFA because we believed
that less than three empirical measures would
make correlation meaningless. Consequently,
patients 3, 7, 18, 19, and 23 were dropped out
for this analysis, reducing the sample size to
19.

All 24 patients were subsequently included
for all other analyses. Linear regression was
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used to test the association between complex-
ity of the temperature curve and clinical con-
dition, as represented by the attributed SOFA
score in each patient. Linear regression was
also used to analyze the relationship between
minimum ApEn and maximum SOFA and be-
tween mean ApEn and mean SOFA in the

whole population. Analysis of variance was
used to examine the relationship between
complexity (minimum and mean) and survival
in the entire group.

To adjust for the effect of age, we fitted a
linear regression between age and either
mean or minimum ApEn. The residuals

from these regressions were then subse-
quently regressed against SOFA to obtain
the “age-free” relation between ApEn and
SOFA. Similarly, we regressed these residu-
als against survival to obtain the age-
adjusted relation between ApEn and sur-
vival.

Table 1. Summary of clinical information and within-individual association between approximate entropy (ApEn) and Sequential Organ Failure Assessment
(SOFA)

Case Gender Age
Length
of Stay Outcome

Temperature
(Mean)

Temperature
(SD)

ApEn
Mean

ApEn
Minimum

SOFA
Maximum

Correlat.
SOFA-ApEn p No.

1 F 53 Pneumonia, septic shock,
ARDS

19 D 35.78 1.18 0,461 0,198 15 �0.213 �.0001 397

2 M 81 Nosocomial pneumonia,
renal insufficiency

64 D 34.52 1.38 0,486 0,199 15 �0.660 �.0001 891

3 M 57 DM, peritonitis, AMI after
surgery for colon cancer

3 D 34.12 1.72 0,309 0,162 20 (�3 days) 37

4 F 65 DM, reanimated cardiac
arrest, cerebral edema

5 D 35.13 0.80 0,447 0,347 14 NS NS 72

5 M 77 Pulmonary edema,
cardiogenic shock, dilated
myocardiopathy

13 D 35.83 0.98 0,530 0,275 11 �0.517 �.0001 143

6 F 74 Aspirative pneumonia,
cardiac insufficiency

12 D 35.92 0.85 0,540 0,327 12 �0.520 �.0001 181

7 F 75 Intestinal ischaemia 4 D 34.69 1.10 0,407 0,247 14 (�3 days) 56
8 F 69 Septic shock, probable

urologic origin, ARDS
60 D 35.17 1.06 0,403 0,160 13 �0.201 �.0001 809

9 M 57 Politraumatism 19 D 35.40 0.99 0,506 0,243 19 �0.522 �.0001 327
10 F 62 Colectomy for colon cancer,

ARDS
89 D 35.39 1.15 0,507 0,230 20 �0.392 �.00011428

11 M 61 Chronic lymphoid leukemia,
COPD, ARDS

18 D 34.36 1.32 0,582 0,334 21 NS NS 348

12 F 50 Multilobar pneumonia, septic
shock

13 S 35.77 0.66 0,554 0,306 14 �0.728 �.0001 277

13 M 36 Multilobar pneumonia,
alcoholic deprivation

15 S 36.22 0.81 0,666 0,367 15 �0.846 �.0001 294

14 M 62 Hepatic cirrhosis, bacterial
peritonitis, empyema

23 S 35.89 0.58 0,674 0,327 12 �0.272 �.0001 473

15 M 54 Esophaguectomy,
mediastinitis, ARDS

21 S 35.14 1.41 0,564 0,357 7 �0.844 �.0001 291

16 M 51 Multilobar pneumonia, septic
shock

10 S 35.46 1.00 0,681 0,523 10 �0.690 �.0001 202

17 F 84 DM, hyperosmolar coma,
acute renal failure

5 S 36.44 0.44 0,611 0,495 6 �0.719 �.0001 36

18 F 46 Hepatic cirrhosis,
metoclopramide
intoxication

3 S 37.00 0.66 0,637 0,561 4 (�3 days) 33

19 F 18 Meningococcaemia, septic
shock

3 S 36.58 1.03 0,751 0,623 8 (�3 days) 60

20 F 76 Acute myeloblastic leukemia,
chemotherapy,
neutropenia, ARDS

8 S 34.94 0.71 0,463 0,254 18 �0.571 �.0001 263

21 F 69 Intestinal perforation,
peritonitis, septic shock

15 S 35.05 0.76 0,572 0,364 12 �0.617 �.0001 349

22 F 70 DM, sigma perforation
during surgery for ovarian
tumor, septic shock

7 S 35.45 0.50 0,643 0,424 12 �0.301 �.0005 142

23 M 53 Pneumonia, alcoholic
deprivation, septic shock

3 S 35.18 1.12 0,542 0,321 12 (�3 days) 44

24 M 49 Esophaguectomy for cancer,
septic shock

18 S 35.23 1.35 0,636 0,310 13 �0.717 �.0001 335

ApEn mean, mean value of ApEn(2,0.2SD, 180) for the temperature series; ApEn minim, minimum value of ApEn(2, 0.2SD, 180) for the temperature series;
SOFA max, maximum value of SOFA attained by the patient; Correlat SOFA-ApEn, correlation coefficient for lineal correlation between hourly ApEn and
attributed hourly SOFA scores (patients admitted for �3 days were not included in the analysis); N, number of hours for which there was an ApEn
measured; ARDS, acute respiratory distress syndrome; DM, diabetes mellitus; AMI, acute myocardial infarction; COPD, chronic obstructive pulmonary
disease; D, died; S, survived.
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Finally, a maximum likelihood approach
was used to fit a logistic regression equation to
the data to predict the probability of patient
survival based on either the minimum ApEn
value or the mean ApEn value.

All statistics were performed on SPSS
11.0.1 software (SPSS, Chicago, IL).

RESULTS

Mean patient age was 63 yrs (range,
18–84). ICU stay length ranged from 3 to
89 days with a mean length of 18.8 d.

There were no significant differences
between genders with respect to age, ICU
stay length, SOFA score, or mortality.
Patients who died tended to be older than
those who survived (66.4 vs. 55.2 yrs), but
this tendency did not reach statistical sig-
nificance (p � .069).

As expected, mean and maximum SOFA
scores in patients who died differed signif-
icantly from those in patients who survived
(mean SOFA score 11.04 [SD 2.68] vs. 5.66
[SD 2.68], F1,22 � 17.77, p � .001) and
maximum SOFA score 15.8 [SD 3.54] vs.
11.0 [SD 3.89], F1,22 � 9.89, p � .005).

Therapeutic efforts were curtailed for
certain patients (cases 5, 12, and 13) at
the request of the families, and in one of
those cases (patient 5) the patient was
discharged to a general internal medicine
ward so that he could die in the company
of his family. Death took place 4 days
after discharge from the ICU. The patient
was discharged alive from the ICU, so for
purposes of the analysis he was classified
as survivor.

Temperature Measurements. There
was a small but significant difference in
the mean temperature and SD between

survivors and nonsurvivors (mean tem-
perature 35.72 vs. 35.12; SD 0.84 vs. 1.14,
p � .05 in both cases). Temperature did
not differ significantly between genders.
There was a trend toward lower mean
temperature with advanced age that did
not reach statistical significance (r �
�.38, p � .064).

Complexity of the Temperature
Curve. There were no significant differ-
ences in ApEn values between male and
female patients. Significant negative cor-
relations between age and ApEn values
were found for both the mean ApEn (r �

�.48, p � .05) and the minimum ApEn (r
� �.44, p � .05).

Within-Individual Correlation Be-
tween ApEn and SOFA Score. ICU stay
length was �5 days in 19 of the 24 pa-
tients; hence, three empirical SOFA de-
terminations could be made in all those
patients. In 17 of these 19 patients (89%),
there was a significant inverse correlation
between the ApEn values and the attrib-
uted SOFA scores (p � .001 for the 17
cases). In the other two cases, the rela-
tionship did not attain statistical signifi-
cance.

Figure 1. Approximate entropy determination. Estimation of the conditional probability for a first
vector p1–p2 (A). The plot shown has only four vectors similar to A (i.e., having the origin within the
range of p1 � r and the end point within the range of p2 � r). Of these, only one (e) is followed by a
point within the range of p3 � r. Accordingly, the conditional probability would be 1:4 � 0.25. The
conditional probability is calculated in the same manner for all pairs of points p1–p2, p2–p3 . . . pn-1–pn.
ApEn is the mean of the logarithm of all the conditional probabilities after changing the sign.

Table 2. Physiologic impairment of various organs or systems

Points

Sequential Organ Failure Assessment (SOFA)

1 2 3 4

Pulmonary, PaO2/FIO2,
mm Hg

�400 �300 �200 �100

Coagulation, platelets 	
103/mm3

�150 �100 �50 �20

Liver, bilirubin, mg/dL 1.2–1.9 2.0–5.9 6.0–1.9 �12.0
Cardiovascular,

hypotension,
adrenergic drugs,

g/kg/min

MAP, �70 mm Hg Dopamine, 5, or
dobutamine, any dose

Dopamine, �5, or
epinephrine, �0.1, or
norepinephrine, �0.1

Dopamine, �15, or
epinephrine, �0.1, or
norepinephrine, �0.1

Central nervous system,
Glasgow Coma Scale

13–14 10–12 6–9 �6

Renal, creatinine, mg/
dL (or urine output,
mL)

1.2–1.9 2.0–3.4 3.5–4.9 (�500 mL/day) �5.0 (�200 mL/day)

MAP, mean arterial pressure.
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Figure 3 shows SOFA and ApEn curves
from a survivor and a nonsurvivor. Fig-
ure 4 displays the initial and final ApEn of
each patient.

Among-Individual Correlation Be-
tween ApEn and SOFA Score. The rela-
tionship between minimum ApEn and
maximum SOFA attained by each patient
was also analyzed in the group as a whole,
including all 24 patients in this analysis.
A significant inverse correlation was ob-
served (r � �.708, p � .001) between
minimum ApEn and maximum SOFA.
Likewise, there was a significant inverse
correlation between mean ApEn and
mean SOFA (r � �.731, p � .001). These
correlations remained significant after
adjustment for the effect of age (mini-
mum ApEn, r � �.718, p � .001; mean
ApEn, r � �.727, p � .001)

Relationship Between ApEn and Sur-
vival. The mean and minimum ApEn for
patients who died were significantly
lower than for those who lived (minimum
ApEn, 0.24 [SD 0.07] vs. 0.40 [SD 0.11)], p
� .001; mean ApEn, 0.47 [SD 0.08] vs.
0.61 [SD 0.07], p � .001) (Fig. 5). The
differences remained significant even af-
ter adjusting for the effect of age.

The relative risk of dying decreased
gradually in the different terciles both for
the minimum ApEn and mean ApEn
(0.87 in the lowest tercile, 0.50 in the
middle tercile, and 0 in the highest ter-

cile for both minimum and mean ApEn).
When we set a minimum ApEn value of
0.28 as a cutoff point, the test was able to
discriminate between the patients who
died and the patients who survived with a
sensitivity of 0.73 (95% confidence inter-
val [CI], 0.39–0.93), a specificity of 0.93
(95% CI, 0.62–1.00), a positive predictive
power of 0.89 (95% CI, 0.51–0.99), and a
negative predictive power of 0.80 (95%
CI, 0.51–0.95). The discriminating ability
of the mean ApEn value was similar; for
example, a cutoff point of 0.55 offered a
sensitivity of 0.91 (95% CI, 0.57–0.99), a
specificity of 0.85 (95% CI, 0.54–0.97), a
positive predictive power of 0.83 (95% CI,
0.51– 0.97), and a negative predictive
power of 0.92 (95% CI, 0.60–1.0).

The logistic regression equation for
predicting death based on the minimum
ApEn value turned out to be significant
(�2 � 14.99, p � .0001, R2 Nagelkerke �
.621). With a cutoff point probability of
0.5, the model classified correctly 83.3%
of the patients. The coefficients obtained
were constant � 8.31 (SE � 3.66) and H
� �27.36 (SE � 11.81).

A significant logistic regression equa-
tion was also constructed based on the
mean ApEn value (�2 � 16.44, p �
00001, R2 Nagelkerke � .675). The equa-
tion classified correctly 87.0% of the pa-
tients. The coefficients obtained were

constant � 16.0 (SE � 7.0) and H �
�29.86 (SE � 12.39).

Thus, the probability of dying was

p �
e(8.31�[27.36�minimum ApEn])

1�e(8.31�[27.36�minimum ApEn])

or

p �
e(16�[29.86�mean ApEn])

1�e�16��29.86�mean ApEn])

An increase in 0.1 units in the mini-
mum or mean ApEn increased 15.4- and
18.5-fold the odds of surviving, respec-
tively.

In both cases, the equations remained
significant after correcting for the effect of
age on ApEn. Actually, most of the effect of
age was gathered by ApEn. A logistic re-
gression model with age as the only factor
had a �2logLikelihood � 29.271, with
Waldage � 2.955. When minimum ApEn
was introduced in the model, �2logLikeli-
hood became 16.224, Waldage � 1.555, and
WaldApEn � 5.525. Similar results were ob-
tained when using mean ApEn (�2logLike-
lihood 16.341, Waldage � 0.316, and
WaldApEn � 5.347).

DISCUSSION

The complexity of the temperature
curve is tightly inversely correlated with
the severity of the patient’s condition.
Both mean and minimum ApEn were sig-
nificantly lower in patients who died than
in patients who survived.

Admittedly, the differences in temper-
ature complexity between survivors and
nonsurvivors could be biased by other
issues related to the clinical status (e.g.,
agitation, disconnections). Nevertheless,
no correlation could be demonstrated be-
tween SOFA or ApEn and the percentage
of hours from which a complexity value
could be obtained in each patient. This
suggests that the influence of clinical sta-
tus on the recording process is not sub-
stantial and that there is no bias toward
preferentially recording patients in a bet-
ter (or worse) clinical status.

Another possible limitation of our
study stems from the fact that most of the
attributed hourly SOFA scores are not
proper empirical data but are interpola-
tions between real measurements. How-
ever, more frequent systematic determi-
nations were considered unethical, and
we thought that this “attributed SOFA
score” was the best possible approxima-
tion to a continuous evaluation of clinical

Figure 2. Examples of temperature tracings. Two examples of 30-hr-long temperature series, one
showing high complexity (A) and the other showing low complexity (B). ApEn, approximate entropy.
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status. Initially, we compared the hourly
ApEn measures with the latest SOFA
score. This would be the “best guess” that

the attending physician would have about
his or her patient clinical status on real
time. However, a posteriori, we had all

the SOFA points, so we could get an even
better fit interpolating between adjacent
SOFA scores. The differences between
these two approaches were insignificant.
Using the empirical SOFA value (which
was considered constant until the next
measurement), the average correlation
coefficient between SOFA and ApEn was
�0.49 (SD 0.26). With the attributed
SOFA, the average correlation coefficient
was �0.48 (SD 0.29). We finally decided to
use the interpolated data because this was
the best “clinical portrait” obtained from
the patient with conventional tools and
we thought ApEn should be correlated
with the most accurate evaluation avail-
able.

As in an earlier study (2), complexity
decreased with age. However, this did not
account for differences in survival. ApEn
was responsible for larger differences
than age in changes in deviance of the
logistic regression models fitted, and it
remained statistically significant both in
the logistic regression and in the analysis
of variance results even after adjustment
for the effect of age. Thus, although ApEn
had an effect independently of age, we
chose not to use age-corrected ApEn in
our analyses, because from the clinician’s
point of view, ApEn uncorrected for age
effects is more clinically relevant, has a
greater statistical significance, and is eas-
ier to use.

Survivors and nonsurvivors also dif-
fered in the mean and SD of the temper-
ature series (lower mean and greater SD

in patients dying). Probably this is just
another consequence of the same physio-
pathologic mechanism underlying the
loss of complexity, namely an impair-
ment of thermoregulation. Nevertheless,
complexity analysis is arguably a more
reliable tool than mean temperature or
SD: It reflects more directly the underly-
ing dysfunction and has a greater dis-
criminating power (e.g., a logistic regres-
sion model combining both mean
temperature and SD would correctly clas-
sify 71% of cases vs. 83% and 88% for
minimum and mean ApEn, respectively).

The inverse correlation between the
severity of the patient’s condition and
complexity of the temperature curve is
not unexpected. Even though health is
commonly thought of as a stable and
regular situation, whereas disease would
be characterized by disorder and pattern
disruption, complex physiologic systems
actually tend to behave in an opposite
fashion (14–16). Thus, healthy output is
normally irregular and apparently ran-

Figure 3. Examples of Sequential Organ Failure Assessment (SOFA) and approximate entropy (ApEn)
correlation. Patient 9: 57 yrs old, polytrauma, died. Patient 13: 36 yrs old, multiple-lobar pneumonia,
alcoholic deprivation, survived.

Figure 4. Evolution of approximate entropy (ApEn) in each patient. ApEn(2,0.2SD,180) of the initial and
final 30 hrs of each patient is displayed. Apen was consistently higher in surviving patients.
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dom, whereas during illness the system’s
output loses complexity and new rhythms
or patterns often emerge. For instance,
healthy cardiac frequency is irregular,
the irregularity decreasing with age and
with the effect of certain pathologies (17–
22); some cardiac, respiratory, and neu-
rologic disorders are associated with the
appearance of a new periodic breathing
pattern (Cheynes-Stokes respiration)
(23); several neurologic conditions are
characterized by the appearance of cer-
tain rhythms (e.g., familiar tremor, Par-
kinson’s disease, epilepsy); and so on.

As a rule, under normal conditions,
most physiologic systems are subject to
multiple stimuli and control mechanisms
that give rise to a complex, apparently
random output. As the system becomes
injured, input and processing are de-
creased or simplified, and thus the output
becomes impoverished and more predict-
able.

These same considerations also apply
to the thermoregulatory mechanisms. Ir-
respective of whether a patient is febrile,
it is reasonable to expect his or her ther-
moregulatory ability to reflect physical
condition. Consequently one would ex-
pect to see a reduced complexity in the
temperature readings of critically ill pa-
tients, the level of complexity mirroring
the patient’s clinical evolution. In this
respect, the mean ApEn value for the
patient series was significantly lower than
the mean ApEn for a series of 21 healthy
subjects. The mean ApEn in the ICU pa-
tient group was 0.549 (range, 0.309 –
0.751) compared with 0.687 (range, 0.433
– 0.814) in the healthy subject series (p �
.001) (M Varela, unpublished data). The
inverse correlation between the ApEn val-

ues and the SOFA scores in most of the
patients in our series is likewise consis-
tent with this premise.

Measuring the complexity of the tem-
perature curve may offer advantages in
clinical settings: It is harmless, noninva-
sive, and inexpensive, and it allows the
patient’s physical condition to be read
continuously in real time. In contrast,
conventional systems like the SOFA score
involve relatively invasive and labor-
intensive analytical determinations that
can only be carried out sporadically. Es-
timates of the complexity of the temper-
ature curve could be of assistance both in
assessing functional status and in estab-
lishing a prognosis when monitoring
critically ill patients.

Finally, complexity analysis could pro-
vide a tool enabling us to move beyond
the fever/nonfever dichotomy. It could
thus make possible a truly quantitative
approach to body temperature useful for
patients both with and without fever and
perhaps hold out applications in other
areas of clinical practice.
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